skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chandra, Jeevan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> We interpret appropriate families of Euclidean wormhole solutions of AdS3gravity in individual 2d CFTs as replica wormholes described by branching around the time-symmetric apparent horizons of black holes sourced by the backreaction of heavy point particles. These wormholes help describe a rich formalism to coarse grain pure states in 2d CFTs dual to the black hole geometries because the wormhole amplitudes match with the Renyi entropies of CFT states obtained by decohering the pure states in a specific way. This formalism can be generalised to coarse grain pure states in several copies of the CFT dual to multi-boundary black holes using wormhole solutions with higher genus boundaries using which we illustrate that coarse graining away the interior of multi-boundary black holes sets the mutual information between any two copies of the dual CFT to zero. Furthermore, this formalism of coarse graining pure states can be extended to decohere transition matrices between pure states which helps interpret more general families of wormhole solutions including those with non replica-symmetric boundary conditions in individual CFTs. The pseudo entropy of the decohered transition matrices has interesting holographic interpretation in terms of the area of minimal surfaces on appropriate black hole or wormhole geometries. The wormhole solutions which show up in the coarse graining formalism also compute the Renyi entropies of Hawking radiation after the Page time in a setup which generalizes the West Coast model to 3d gravity. Using this setup, we discuss the evaporation of one-sided black holes sourced by massive point particles and multi-boundary black holes in 3d gravity. 
    more » « less
  2. A<sc>bstract</sc> We construct new Euclidean wormhole solutions in AdSd+1and discuss their role in UV-complete theories, without ensemble averaging. The geometries are interpreted as overlaps of GHZ-like entangled states, which arise naturally from coarse graining the density matrix of a pure state in the dual CFT. In several examples, including thin-shell collapsing black holes and pure black holes with an end-of-the-world brane behind the horizon, the coarse-graining map is found explicitly in CFT terms, and used to define a coarse-grained entropy that is equal to one quarter the area of a time-symmetric apparent horizon. Wormholes are used to derive the coarse-graining map and to study statistical properties of the quantum state. This reproduces aspects of the West Coast model of 2D gravity and the large-censemble of 3D gravity, including a Page curve, in a higher-dimensional context with generic matter fields. 
    more » « less
  3. A bstract In holographic CFTs satisfying eigenstate thermalization, there is a regime where the operator product expansion can be approximated by a random tensor network. The geometry of the tensor network corresponds to a spatial slice in the holographic dual, with the tensors discretizing the radial direction. In spherically symmetric states in any dimension and more general states in 2d CFT, this leads to a holographic error-correcting code, defined in terms of OPE data, that can be systematically corrected beyond the random tensor approximation. The code is shown to be isometric for light operators outside the horizon, and non-isometric inside, as expected from general arguments about bulk reconstruction. The transition at the horizon occurs due to a subtle breakdown of the Virasoro identity block approximation in states with a complex interior. 
    more » « less
  4. A bstract A two-dimensional CFT dual to a semiclassical theory of gravity in three dimensions must have a large central charge c and a sparse low energy spectrum. This constrains the OPE coefficients and density of states of the CFT via the conformal bootstrap. We define an ensemble of CFT data by averaging over OPE coefficients subject to these bootstrap constraints, and show that calculations in this ensemble reproduce semiclassical 3D gravity. We analyze a wide variety of gravitational solutions, both in pure Einstein gravity and gravity coupled to massive point particles, including Euclidean wormholes with multiple boundaries and higher topology spacetimes with a single boundary. In all cases we find that the on-shell action of gravity agrees with the ensemble-averaged CFT at large c . The one-loop corrections also match in the cases where they have been computed. We also show that the bulk effective theory has random couplings induced by wormholes, providing a controlled, semiclassical realization of the mechanism of Coleman, Giddings, and Strominger. 
    more » « less